FARIDEH NABIZADEH CHIANEH

CONTACT INFORMATION

Name	Phone	Fax	Email	Address
FaridehNabizadehChianeh	0098-233-	0098-	Nabizadeh@semnan.ac.ir	Faculty of
	1533199	233-	Nabizadeh.f3@gmail.com	Chemistry,
		31534110	_	Semnan
				University,
				Semnan

EDUCATION

Degree	Year	Field	Thesis	
Ph.D ^a	2010-2014	Applied	Application of electrodes with nano coatings for	
		Chemistry	degradation of organic pollutants by using ozone -	
			electrolysis and ozone- electrocoagulation processes	
M.Sc ^a	2008-2010	Applied	Study and application of electro coagulation method for	
		Chemistry	treatment wastewaters	
B.Sc ^b	2003-2007	Applied		
		Chemistry		

^aDepartment of Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.

^bDepartment of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

TEACHING EXPERIENCES

Title of Course	Undergraduate	Graduate	te Dates		Name of Institution
			from	To	
Industrial Inorganic Chemistry	V		2011	2014	Bu-Ali Sina University
Principles of Water and Wastewater Treatment	V		2015	2017	Semnan University
Water and Industrial Wastewaters Treatment Laboratory	V		2015	2017	Semnan University
Industrial chemistry I (Inc. Fluid Flow, Heat Transfer and Mass transfer)	V		2015	Present	Semnan University
Principles of Industrial Chemistry Calculations	V		2015	Present	Semnan University
Industrial chemistry II (Inc. Unit Operations)	V		2015	Present	Semnan University
Applied Electrochemistry	√		2016	2018	Semnan University
Reactors		1	2015	Present	Semnan University
Advanced chemical reactors		V	2015	Present	Semnan University
Control Instrumentation		V	2016	2016	Semnan University
Water and wastewater treatment processes		V	2017	Present	Semnan University
Conceptual Process Design		V	2017	Present	Semnan University

CURRENT RESEARCH INTERESTS

Advanced Water and Wastewater Treatment Processes *Electrochemical advanced oxidation Processes

*Membrane

Electrophoretic deposition technique

Waste recycling

Artificial neural network

REFEREED PUBLICATIONS

- **1.** Evaluation of electro-coagulation method for decolorization and degradation of organic dyes in aqueous solutions, Jalal BasiriParsa and *Farideh Nabizadeh Chianeh*, Korean Journal of chemical engineering., 2011, 28, 1025-1031.
 - **2.** Degradation of azo dye from aqueous solutions using nano- SnO2/Ti electrode prepared by electrophoretic deposition method: Experimental Design, *Farideh Nabizadeh Chianeh* and Jalal Basiri Parsa. Chemical engineering research and design., 2014, 92, 2740-2748.
 - **3.** Degradation of azo dye from aqueous solutions using Ti anode coated with MWCNTs-TiO2, Jalal BasiriParsa and *Farideh Nabizadeh Chianeh*, Journal of the Iranian chemical society., 2015, 12, 175-182.
- **4.** Decolorization of azo dye C.I. Acid Red 33 from aqueous solutions by anodic oxidation on MWCNTs/Ti electrodesJalal BasiriParsa and *Farideh Nabizadeh Chianeh**, Desalination and water treatment., 2016, 43, 20574- 20581.
- **5.** Electrochemical degradation of metronidazolefrom aqueous solutions using stainless steel anode coated with SnO₂ nanoparticles: Experimental Design, *Farideh Nabizadeh Chianeh*, JalalBasiriParsa, Journal of the Taiwan Institute of Chemical Engineers., 2016, 59, 424-432.
- **6.** Application of response surface methodology for electrochemical oxidation of the C.I. Reactive Orange 7 using flow reactor with Ti/Sb–SnO2 anode, Jalal BasiriParsa, MansourehBahiraei and *Farideh Nabizadeh Chianeh*, Desalination and water treatment., 2016, 57, 20027- 20036.
- 7. Removal of Ciprofloxacin from aqueous solution by a continuous flow electro coagulation process: Experimental design, Jalal BasiriParsa, Taher Mehdi Panah, *Farideh Nabizadeh Chianeh*, Korean Journal of chemical engineering.,2016, 33, 891-901.
- **8.** Artificial Neural Network Modeling for Removal of Azo Dye from Aqueous Solutions by Ti Anode Coated with Multiwall Carbon Nanotubes, *Farideh Nabizadeh Chianeh**, Jalal

- Basiri Parsa, Hadi Rezaei Vahidian, Environmental Progress & Sustainable Energy., 2017, https://doi.org/10.1002/ep.12650.
- **9.** Degradation of ciprofloxacin using electrochemical oxidation by Ti/ nanoSnO2-MWCNT electrode: Optimization and modelling through central composite design, Marjan Esmaelian, *Farideh Nabizadeh Chianeh**, Alireza Asghari, Journal of Industrial and Engineering Chemistry, 2019, 78, 97-105.
- **10.** Application of central composite design for electrochemical oxidation of reactive dye on Ti/MWCNT electrode, *Farideh Nabizadeh Chianeh* *, Mohammad Sadegh Avestan, Journal of the iranian chemical society, 2020, 17, 1073-1085.
- 11. Simultaneous removal of some dyes using advanced electrochemical oxidation method: Multivariate calibration (PLS) method, Fatemeh Mahmoudian, *Farideh Nabizadeh Chianeh*, S Maryam Sajjadi, Applied Chemistry, 2020.
- **12.** Application of a novel Ti/nanoSnO2-α-Fe2O3 anode for the electro-catalytic degradation of dye pollutant: optimization of operational parameters by central composite design, Fatemeh Mirzaei Abdoulyousefi, *Farideh Nabizadeh Chianeh*, Alireza Asghari, Journal of The Electrochemical Society, 2020.
- **13.** Introducing a framework for modeling of drug electrochemical removal from wastewater based on data mining algorithms, scatter interpolation method, and multi criteria decision ..., Saeed Farzin, *Farideh Nabizadeh Chianeh*, Mahdi Valikhan Anaraki, Fatemeh Mahmoudian, Journal of Cleaner Production, 2020.
- **14.** Simultaneous electrochemical decolorization of Acid Red 33, Reactive Orange 7, Acid Yellow 3 and Malachite Green dyes by electrophoretically prepared Ti/nanoZnO-MWCNTs anode ..., Fatemeh Mahmoudian, *Farideh Nabizadeh Chianeh*, Seyedeh Maryam Sajjadi, Journal of Electroanalytical Chemistry, 2021.
- **15.** Efficient electrochemical oxidation of reactive dye using a novel Ti/nanoZnO–CuO anode: electrode characterization, modeling, and operational parameters optimization, Nastaran Akbari, *Farideh Nabizadeh Chianeh*, Ali Arab, Journal of Applied Electrochemistry, 2022.
- **16.** Optimization of reactive dye removal by electrochemical oxidation with Ti/nanoZnO (Experimental study), Nastaran Akbari, *Farideh Nabizadeh Chianeh*, Applied Chemistry, 2022.

- 17. Preparation and characterization of a novel polyethersulfone nanofiltration membrane modified with Bi2O3 nanoparticles for enhanced separation performance and antifouling ..., Mahsa Khorram, *Farideh Nabizadeh Chianeh*, Mozhgan Shamsodin, Journal of Industrial and Engineering Chemistry, 2022.
- **18.** Dye Pollutant Removal from Synthetic Wastewater: A New Modeling and Predicting Approach Based on Experimental Data Analysis, Kriging Interpolation Method, and Computational ..., M Valikhan Anaraki, F Mahmoudian, *F Nabizadeh Chianeh*, S Farzin, Journal of Environmental Informatics, 2022.
- **19.** Improvement of characterization and application of Polyethersulfone membrane by CeO₂@SiO₂ nanoparticles for drug pollutant removal, Zahra Sargolzaei, *Farideh Nabizadeh Chianeh*, Mozhgan Shamsodin, Journal of Porous Materials, 2023.
- **20.** Study of novel Ti/nanoTiO2-CuO electrode preparation for electrocatalytic degradation of drug pollutant from aqueous solution, Faezeh Abdollahpour Mollahajlou, *Farideh Nabizadeh Chianeh*, Physics and Chemistry of the Earth, Parts A/B/C, 2023.
- **21.** Treatment of real municipal wastewater using aluminum electrode by electrocoagulation process: Experimental design and process performance, *Farideh Nabizadeh Chianeh*, Iranian Journal of Chemistry and Chemical Engineering, 2023.
- **22.** Spectrophotometric Study of Photo-electro-catalytic Degradation of 4-Nitrophenol on TiO2-MWCNT/Ti Electrode Using Multivariate Cure Resolution-Alternating Least Squares Method, Fatemeh Chitgaran, S Maryam Sajjadi, *Farideh Nabizadeh Chianeh*, Javad Feizy, Applied Chemistry, 2023.

۲۳- حذف همزمان چند ماده رنگزا با استفاده از روش اکسایش پیشرفته الکتروشیمیایی:روش کالیبراسیون چند متغیره (حداقل مربعات جزئی)، فاطمه محمودیان، فریده نبی زاده چیانه *، سیده مریم سجادی، ۲۰۱۹، مجله علمی - پژوهشی شیمی کاربردی، پذیرفته شده.

۲۴- حذف ماده رنگزای آزو با استفاده از آندهای MWCNTs/Ti و MWCNTs-TiO2/Ti، فریده نبی زاده چیانـه*، جـلال بصیری پارسا، ۲۰۱۸، نشریه علوم و فناوری رنگ، سال یازدهم، شماره ۲.

۲۵- کارایی روش پاسخ سطح در بهینه سازی حذف رنگزای مالاشیت سبز با استفاده از زئولیت طبیعی، فریده نبی زاده چیانه *، بهرام محمدی و علیرضا اصغری ۲۰۱۸، فصلنامه شیمی کاربردی، سال دوازدهم، شماره ۴۲. ۲۶- تخریب ماده رنگزای راکتیو نارنجی ۷ با استفاده از الکترود تیتانیم پوشش داده شده با نانو ذرات دی اکسید قلع و بهینه سازی به روش سطح پاسخ، فریده نبی زاده چیانه* و جلال بصیری پارسا،۲۰۱۹، نشریه علوم و فناوری رنگ، شماره ۱۳.

PAPERS PRESENTED AT MEETINGS AND CONGRESSES

- 1. Removal of direct dye solution by electro coagulation: An investigation of the effect of operational parameters, 15th Iranian chemistry congress; 2011, Hamadan, Iran.
- 2. The investigation of parameters affecting C. I. Acid Red 33 removal by electro coagulation method, 15th Iranian chemistry congress; 2011, Hamadan, Iran
- 3.Removal of Direct Black 22 dye from colored wastewater by electro coagulation, 17th Iranian seminar of analytical chemistry; 2011, Kashan, Iran.
- 4. Removal of azo dye from aqueous solutions using MWCNTs/Ti anode, 16th Iranian congress of Physical Chemistry; 2013, Babolsar, Iran
- 5. Photoelectrocatalytic degradation of anionic dye using MWCNTs –TiO₂/Ti composite electrodes, 16th Iranian congress of Physical Chemistry; 2013, Babolsar, Iran
- 6 -Degradation of azo dye from aqueous solutions using nano- SnO₂/Ti electrode, the 18 Iranian chemistry congress, Semnan, 2015.
- 7- Application of artificial neural network for the removal of azo dye by multiwall carbon nano tubes coating on titanium, Farideh Nabizadeh Chianeh, 2016, 12th Iranian seminar of electrochemistry.
- 8- Artificial neural network modeling of photoeletrocatalytic removal of a azo dye using mwcnts-TiO2 composite on titanium, Farideh Nabizadeh Chianeh, 2016, 12th Iranian seminar of electrochemistry.
- 9- Electrochemical degradation of reactive dye using nano-SnO2/Ti anode, F.Nabizadeh Chianeh, J. Bsiri Parsa, 2017, 19th Iranian chemistry congress, Shiraz, Iran.
- 10- A novel SnO2 electrode preparation and its application in organic degradation, Fatemeh Mirzaei Abdoulyousefi, Farideh Nabizadeh Chianeh, Alireza Asghari, 2019, 26th Iranian seminar of analytical chemistry; Semnan.

۱۱- بررسی کارایی روش انعقاد الکتریکی در حذف رنگ دایر کت سیاه ۱۲۲ ز پساب، فریده نبی زاده چیانه و جلال بصیری پارسا ۱۸۹۰ دومین همایش ملی سوخت، انرژی و محیط زیست، کرمانشاه.

۱۲- بررسی کارایی فرآیند انعقاد الکتریکی جهت حذف رنگزای اسید قرمز ۳۳ از پساب رنگی، فریده نبی زاده چیانه و جلال بصیری پارسا ۱۳۸۹، دومین همایش ملی سوخت، انرژی و محیط زیست، کرمانشاه.

۱۳ - تصفیه پساب حاوی رنگزای دایرکت سیاه 22به روش انعقاد الکتریکی، فریده نبی زاده چیانه و جـلال بصـیری پارسـا، ۱۳۸۹، سیزدهمین همایش ملی بهداشت، کرمان.

۱۴ - حذف همزمان چند ماده رنگزا با استفاده از روش اکسایش پیشرفته الکتروشیمیایی:روش کالیبراسیون چند متغیره (حداقل مربعات جزئی)، فاطمه محمودیان، فریده نبی زاده چیانه *، سیده مربع سجادی، ۱۳۹۸، چهارمین کنفرانس ملی شیمی کاربردی، ارومیه.

۱۵- حذف آلاینده دارویی با روش اکسایش پیشرفته الکتروشیمیایی، فائزه عبداله پور، فریده نبی زاده چیانه ً، علیرضا اصغری، ۱۳۹۸، چهارمین کنفرانس ملی شیمی کاربردی، ارومیه.

۱۶ حذف رنگزای راکتیو نارنجی ۷ با استفاده از نانوکامپوزیت ZnO-CuO، نسترن اکبری، فریده نبی زاده چیانه ما عرب، ۱۳۹۸، چهارمین کنفرانس ملی شیمی کاربردی، ارومیه.

RESEARCH PROJECTS

- 1- Application of titanium electrode coated with multi wall carbon nanotubes for removal of organic pollutants, Semnan University, 2016-2018.
- 2- Treatment of real municipal wastewater using aluminum electrode by electrocoagulation process: Experimental design and process performance, Semnan Province Water and Wastewater Company, 2019-2020.

SUPERVISOR: M.Sc. Degree

No.	Student's Full Name	Date	Title of Thesis and University
1	Fatemeh chitgaran	2016-2017	Simultaneous Determination of Nitrophenols using Photoectro-catalytic Degradation Reactions and Multivariate Calibration Methods (Co-Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
2	Marjan Esmaelian	2017-2018	Application of titanium electrode coated with multi wall carbon nano tubes – tin dioxide nano particles composite for removal of drug pollutant(Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
3	Fatemeh Mahmoudian	2018-2019	The Use of Ti/ZnO electrode modified by multi-wall carbon nanotubes electrode for simultaneous decolorization of some dyes using Multivariate calibration (PLS) method (Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
4	Fatemeh Mirzaei Abdoulyousefi	2018-2020	Removal of C.I. Acid Yellow 3dye from aqueous solution by electro-catalyticoxidation technique using Ti/SnO2-α-Fe2O3nanocomposite electrod
5	Nastaran Akbari	2018-2020	Electrochemical oxidation of C.I Reactive Orange 7 dye using Ti/nanoZnO-CuO electrode: Electrode characterization and operational parameters optimization, (Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
6	Faeze Abdollahpour Mollahajlou	2018-2020	Preparation and charactrization of Ti/TiO2-CuO nanocomposite electrode for electrocatalytic degradation of drug pollutant from aqueous solution. (Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
7	Zahra Sargolzaei	2019-2021	Modification of polyethersulfon (PES) membrane by cerium dioxide (CeO2) nanoparticles for highly-efficient drug pollutant removal, (Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
8	Mohammad Hosien Mohammadi	2019-2021	Fabrication and modification of polyethersulfone membrane by SnO2 nanoparticles to improve the removal of organic compounds, (Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.
9	Mina mehran	2019-2021	Comparison of the performance of Ti/nanoZnO anodes modified by metal oxides such as CeO2, CuO and Bi2O3 on electrochemical removal of drug pollutant
10	Marzieh atashzaran	2019-2021	Electrochemical oxidation of pharmaceutical pollutant using various modified anodes based on Ti/TiO2 in Aqueous solution, (Supervisor), Faculty of Chemistry, Semnan University, Semnan, Iran.

11	Mahsa	2020-2022	Preparation, modification and characterization of PES thin
	khorram		film composite membrane modified by Bi2O3 nano
			particles, (Supervisor), Faculty of Chemistry, Semnan
			University, Semnan, Iran.
12	Fatemeh	2020-2022	Characterization and electro catalytic performance of novel
	Karimi		Ti/nano SnO2-CeO2 modified by Bi2O3 nanoparticles
			electrode in removal of Hydrochlorothiazide, (Supervisor),
			Faculty of Chemistry, Semnan University, Semnan, Iran.
13	Zeynab sadat	2020-2022	Preparation and evaluation of navel Ti/nanoSnO2-CuO
	Mirali		electrode; application in electrocatalytic degradation of
	Mortezayi		organic pollutant, (Supervisor), Faculty of Chemistry,
	Rote		Semnan University, Semnan, Iran.
14	Sara Rezaie	2021-2023	Removal of the organic pollutant from aqueous solution by
			electrochemical oxidation using Ti/nanoZnO-Bi2O3
			modified electrode: Modeling and optimization,
			(Supervisor), Faculty of Chemistry, Semnan University,
			Semnan, Iran.